Bacterial tRNA Modification Enzymes: Potential Role in Biology and Virulence

نویسندگان

  • Daniel C Shippy
  • Amin A Fadl
چکیده

Volume 6 • Issue 2 • 1000e105 Biol Med ISSN: 0974-8369 BLM, an open access journal RNA molecules contain four standard nucleosides, adenosine (A), guanosine (G), cytidine (C), and uridine (U). Post-transcriptional RNA modifications are present in many types of RNAs including ribosomal RNA (rRNA), messenger RNA (mRNA), transfer RNA (tRNA), and others. These RNA modifications are important for altering the chemical and physical properties of nucleotides resulting in increased efficiency of RNA functions. Of all the RNAs, tRNA exhibits the largest number and most diverse modifications with cells from all kingdoms of life allocating a large portion of their genome to encoding enzymes involved in the post-transcriptional modification of nucleosides in tRNA [1]. Post-transcriptional modification of the anticodon domain in tRNA is a major factor in controlling gene expression which enables bacteria to survive in many different environments [2]. Modifications of uridine at the wobble position of the anticodon (U34) are required for the recognition of codons that are rarely used. In the absence of modifications, a shift in the translational reading frame occurs resulting in the expression of alternate protein sequences [2].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

tRNA Modification Enzymes GidA and MnmE: Potential Role in Virulence of Bacterial Pathogens

Transfer RNA (tRNA) is an RNA molecule that carries amino acids to the ribosomes for protein synthesis. These tRNAs function at the peptidyl (P) and aminoacyl (A) binding sites of the ribosome during translation, with each codon being recognized by a specific tRNA. Due to this specificity, tRNA modification is essential for translational efficiency. Many enzymes have been implicated in the modi...

متن کامل

GidA, a tRNA Modification Enzyme, Contributes to the Growth, and Virulence of Streptococcus suis Serotype 2

Glucose-inhibited division protein (GidA), is a tRNA modification enzyme functioning together with MnmE in the addition of a carboxymethylaminomethyl group to position 5 of the anticodon wobble uridine of tRNA. Here, we report a GidA homolog from a Chinese isolate SC-19 of the zoonotic Streptococcus suis serotype 2 (SS2). gidA disruption led to a defective growth, increased capsule thickness, a...

متن کامل

RNA-dependent lipid remodeling by bacterial multiple peptide resistance factors.

Multiple peptide resistance (MprF) virulence factors control cellular permeability to cationic antibiotics by aminoacylating inner membrane lipids. It has been shown previously that one class of MprF can use Lys-tRNA(Lys) to modify phosphatidylglycerol (PG), but the mechanism of recognition and possible role of other MprFs are unknown. Here, we used an in vitro reconstituted lipid aminoacylatio...

متن کامل

High-molecular-weight forms of aminoacyl-tRNA synthetases and tRNA modification enzymes in Escherichia coli.

The presence of high-molecular-weight complexes of aminoacyl-tRNA synthetases in Escherichia coli has been reported (C. L. Harris, J. Bacteriol. 169:2718-2723, 1987). In the current study, Bio-Gel A-5M gel chromatography of 105,000 x g supernatant preparations from E. coli Q13 indicated high molecular weights for both tRNA methylase (300,000) and tRNA sulfurtransferase (450,000). These tRNA mod...

متن کامل

Two-subunit enzymes involved in eukaryotic post-transcriptional tRNA modification

tRNA modifications are crucial for efficient and accurate protein translation, with defects often linked to disease. There are 7 cytoplasmic tRNA modifications in the yeast Saccharomyces cerevisiae that are formed by an enzyme consisting of a catalytic subunit and an auxiliary protein, 5 of which require only a single subunit in bacteria, and 2 of which are not found in bacteria. These enzymes ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014